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Coupling parameter in synchronization of diluted neural networks
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We study the critical features of a coupling parameter in the synchronization of neural networks with diluted
synapses. Based on simulations, an exponential decay form is observed in the extreme case of global coupling
among subsystems and full connection in each network: there exists a maximum and a minimum of the critical
coupling intensity for synchronization in this spatially extended system. For partial coupling, we present the
primary result about the critical coupling fraction for various linking degrees of the networks.
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Synchronization of coupled complex systems has been aselected by C;;=1 with the connection probabilityd
intensively studied subject since the pioneering work ofe[0,1], or Cj;=0 with probability 1—d [10]. The activation
Fujisaka[1] and otherd2]. This phenomenon of synchroni- function ©(r) is defined as®(r)=[1+tanh(3r)]/2. Here,
zation is observed in many other fields, such as in neurgB=1/T characterizes a measure of the inverse magnitude of
networks[3], biological population$4], and chemical reac- the amount of noise affecting this neuron, performing the
tions[5]. Recently, spatially extended systems have inspiredole of reciprocal temperature in analogy to thermodynamic
great interesf6]. systems. For convenience, we gt 10 through all simula-

Following the series of works contributed by Zanette andtions.
co-workers[6—8], we consider a simple modified version of  Obviously, the first term on the right-hand side of Et).
the neural network model described[Bl. As a very impor-  pictures the total responses from its own internal units. The
tant ubiquitous factor corresponding to real biotic neural syssecond term expresses the interaction of the summation of
tems, the neural activity and morphology of synaptic connecthe received signals from the neurons at the same position in
tivity, i.e., the dilution of neural networks must be introducedtwo networks. The parameterc[0,1], called the coupling
[9]. That is, in natural neural systems, not all the neurons aritensity, describes the interaction degree between coupling
linked together. So, there is a chance to investigate the critisubsystems. When the intensiéy< 1, it is easy to see that
cal features of the coupling parameter and the function othe coupling subsystems evolve independently. On the other
structural topology in the synchronization of extended sysiimit case,e~1, the coupling subsystems are governed by

tems. the same dynamical law and will be driven into synchroni-
We consider a neural network model that consistdNof zation very easily.
analog neurons;(t) € (0,1),i=1, ... N. Each neuror; is For measuring coherence in the collective activity of the

connected with other neurons by a random weighted cou- neural systems, an important time-dependent feature, an ac-
pling J;;  (—1,1), which is a randomly independent variable tivity function u;(t)==}_,x(t) for each network=1,2, is

with uniform distribution. Obviously, the connectivity matrix introduced. When the global coupling of two systems is ab-
J is asymmetric and the neural system exhibits complex spasent,s~0, u,(t) and u,(t) will update independently and

tial oscillations. As a simple version of coupled neural sys-not become synchronized since the initial conditions in the
tems designed by Zanette and Mikhailp8], we use the subsystems are different. On the other hand, the activity sig-

following parallel dynamics for the updating neurons: nals of two subsystems will be identical if the coupling sys-
1 1 1 ) tems become synchronous. Figur@)lshows that the syn-
X (t+1)=(1-¢)0(hi(t))+eO(hi(t) +hi(t)), chronization for this extended system successfully takes

) ) 1 ) place att=275 for both subsystems witk= 100, while the
X (t+1)=(1-¢e)0(hi(1) +eO () +hi(t). (1)  coupling intensitye=0.34 and the linked degree in each
subsystend=0.2.

Kk . . . .
Here h{(t) is the local field of theith neuron and is ex- To show the degree of synchronization in this coupling

pressed by system, the dispersion of activity patterns is defined as
N
hlk(t):z C,]JIJXk(t), (2) 1 2 N i - 2
= , D=5 2, 2 DO -, 3

whereC;; €{0,1} is used to denote the linked status between . _
the ith and thejth neuron. The dilution factoC;; is an wherexk(t)=2*12i2=lx[<(t) denotes the average activity of
independent identically distributed random variable, which isneurons occupying th&th position in both subsystems at
time t. Figure 1b) shows that the dispersion with a logarith-
mic scale evolves in time, with the same synchronous con-
*Corresponding author. Email address: ychen@Izu.edu.cn ditions in Fig. Xa).
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FIG. 1. The synchronization of diluted networks with=100,
£=0.34, andd=0.2. (@) The evolution of time-dependent activity
of both subsystems comes into synchronization=275. (b) Loga-
rithm of dispersion of both networks.

FIG. 2. The simulations of relationship between the critical cou-
pling parametere, and the linked degred with N=200, corre-
sponding to step size of linked degré®m Ad=0.05 and(b) Ad
=0.001.

It is obvious that the larger the coupling intensitybe-  the largers, becomes. This can be explained from the fact
comes, the more easily synchronization is reached for thehat the evolution of subsystems with largkis more stable
system, with other parameters remaining the same. Concoménd it needs a more powerful coupling parameter to drive
tantly, the question is whether there exists a critical couplingheir evolutions into synchronization. In Figl®, we present
parametek, and furthermore, whether there exists a depenthe plot of the simulation with the step size of linked degree
dent relationship betweesy and the topological structure in  Ad=0.001 in the same conditions as Figa2 Comparing
the subsystems. In fact, since the evolution of networks igoth plots of simulations, the agreement is excellent for the
sensitive to the varied initial states and the different randongjlobal tendency of the qualitative behavior &f versusd.
connecting weight matrices in systems with the same linked From Fig. 3, it follows that it is more difficult to come
degreed, it is impossible to find an identical value ef.  into synchronization with an increase of the size of sub-
However, the fact that the dispersion for these corre-  systems. It is clear, however, that there exists a homologous
sponding to varied initial states and connecting matrices irasymptotic behavior in the region of larger linked degree.
our simulations is distributed in a narrow region and in aNow, the case is how the limit of the coupling intensity de-
universal way, even abl goes into infinity, causes us to pends on the varied size of networks. In Fig. 4, we present
investigate the qualitative curve ef vsd. the plot ofe. versus 1IN for the linked degreel=1, which

Figure 2a) shows a plot of the critical coupling intensity is identical to the limit case. The form of the limit coupling
. versus the linked degree in subsystems with the size intensity as a function of the inverse of the size of networks
N=200. One can see that the qualitative relation betwgen calls for a fitting of these data with an exponential decay
andd is close to a sigmoidal curve. The larggibecomes, function
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FIG. 3. The qualitative relationship &f, vs d for various sizes (b)1 o
of networksN. ]
0.9 4

ec=A+Be VCN, (4 05

0.7

where the constanf=0.44+0.024, B=0.44+0.020, and 06
C=0.0066+0.00071. It follows that the maximal critical p ]

coupling intensity corresponding thl—oo is set as 0.88
*=0.044, and in the same sense for another extreme case, tt %47
minimal e, is 0.44+0.024 if both global connecting sub- 03
systems designed by El) come into synchronization.

Another important topic is the fraction of coupling neu- ]
rons between two subsystems. The considered coupling sys 01
tem can be viewed as a structure made of two horizontal oo}
layers of networks. Apparently, from the definition, Edj), 00 01 02 03 04 05 06 07 08 09 10
of the above investigated systems, the neurons are involveu
in global vertical coupling interactions between two layers, F|G. 5. The synchronization diagram of minimal coupling prob-
or the dimensionality of coupling parameter is identical toapility p, vs the corresponding coupling intensity(a) for systems
the size of subsystems. Considering the real physical systemsth size N=100, d=0.5 and(b) for systems with varied linked
or the potential applications, the coupling interactions mustiegreed andN=100 in the form of qualitative curves.

0.2 4

d=0.2

be diluted and modified with time. As a result, the systems
0.85 defined by Eq(1) can be redefined as
050+ X (t+1)=[1-e&(D)]O (1) +e& (DO (i (H) +h{(D),
075 1 XZ(t+1)=[1-s&(0)]O (1) +e& (DO (h (1) +hi(D),
- (5)
0.70
£, ] where &(t) €{0,1} is a random number with probability 1
0.65 —p andp, respectively.
] For revealing the association between the critical coupling
0.60 fraction p. and the coupling intensity, the qualitative dia-
] gram of p, versuse is shown based on numerical simula-
0.55 - N tions for subsystems witN=100, d=0.5[see Fig. §a)]. It
™ is easy to get an acceptable conclusion thadecreases with
0.50 —— T the increase of. Note that the series of turning points cor-
0.000 0.002 0.004 0.006 0.008 0.010 responding tgp.=1 in Fig. 5b) are equivalent to the points
N in the plot ofe, versusd (cf. Fig. 3.
FIG. 4. The plot ofe, vs 1N for various sizes of networks in In addition, other valuable information about the minimal
the limit cased=1. The exponential decay fitted curve of this re- critical fraction for synchronization of this extended system
lationship is shown by a dotted line. denoted by Eq.(5) can be revealed from another critical
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tionship between local correlation and stochastic coupling. It
0.75 is possible to give the minimal critical coupling fraction for
various linked degrees in the synchronization of this ex-
tended system wittN— o , which is more analogous to the
case of real biotic systems, through analyzing curvas.ofs

d for various sizes of the subsystem. However, considering
our computational capability, the more intensive and detailed
work is left out for future investigation.

In this paper, we have studied the critical features of the
coupling parameter in the synchronization of neural net-
works for various structural topologies. We obtain an expo-
nential decay form in the case of global coupling among
subsystems and full connection in each network. We find that
there exists a maximal and minimal critical coupling inten-
IE————— sity for synchronization in this extended system. For the case
0.0 02 04 06 08 1.0 of partial coupling, a primary result about the critical cou-
pling fraction for various linked degrees of networks is

FIG. 6. The qualitative relationship qf, vs d with the sub- Shown. Considering that the definition of our model is that of
system sizeN =400. a typical spatially extended system, it is useful to study re-
lated topics in other extended systems, such as synchroniza-
tion and directed percolation in a coupled map latfit#],
coupled ordinary differential equations, and partial differen-
tial equations.

0.60

0.55 1

point ate =1 in Fig. 5a) and Fig. %b). In Fig. 6, the mini-
mal critical coupling probability for various linked degrees
of the subsystem witthN=400 is presented. During the evo-
lution of networks, the neuron of each site in both networks

updates due to the competing effect of the local rules and the This work was supported by the Doctoral Research Foun-
coupling mechanism. It is clear that the region above thealation of Lanzhou University and the Innovation Project of
curve is the synchronization part, while the lower part isCAS with Grant No. kzcx1-09. We wish to thank Professor
desynchronized, thus the curve embodies a competing relét. Zhao for most constructive and fruitful discussions.
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