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Coupling parameter in synchronization of diluted neural networks
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We study the critical features of a coupling parameter in the synchronization of neural networks with diluted
synapses. Based on simulations, an exponential decay form is observed in the extreme case of global coupling
among subsystems and full connection in each network: there exists a maximum and a minimum of the critical
coupling intensity for synchronization in this spatially extended system. For partial coupling, we present the
primary result about the critical coupling fraction for various linking degrees of the networks.
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Synchronization of coupled complex systems has bee
intensively studied subject since the pioneering work
Fujisaka@1# and others@2#. This phenomenon of synchron
zation is observed in many other fields, such as in ne
networks@3#, biological populations@4#, and chemical reac
tions @5#. Recently, spatially extended systems have insp
great interest@6#.

Following the series of works contributed by Zanette a
co-workers@6–8#, we consider a simple modified version
the neural network model described in@8#. As a very impor-
tant ubiquitous factor corresponding to real biotic neural s
tems, the neural activity and morphology of synaptic conn
tivity, i.e., the dilution of neural networks must be introduc
@9#. That is, in natural neural systems, not all the neurons
linked together. So, there is a chance to investigate the c
cal features of the coupling parameter and the function
structural topology in the synchronization of extended s
tems.

We consider a neural network model that consists oN
analog neuronsxi(t)P(0,1), i 51, . . . ,N. Each neuronxi is
connected with other neuronsxj by a random weighted cou
pling Ji j P(21,1), which is a randomly independent variab
with uniform distribution. Obviously, the connectivity matri
J is asymmetric and the neural system exhibits complex s
tial oscillations. As a simple version of coupled neural s
tems designed by Zanette and Mikhailov@8#, we use the
following parallel dynamics for the updating neurons:

xi
1~ t11!5~12«!Q„hi

1~ t !…1«Q„hi
1~ t !1hi

2~ t !…,

xi
2~ t11!5~12«!Q„hi

2~ t !…1«Q„hi
1~ t !1hi

2~ t !…. ~1!

Here hi
k(t) is the local field of thei th neuron and is ex-

pressed by

hi
k~ t !5(

j 51

N

Ci j Ji j xj
k~ t !, ~2!

whereCi j P$0,1% is used to denote the linked status betwe
the i th and the j th neuron. The dilution factorCi j is an
independent identically distributed random variable, which
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selected by Ci j 51 with the connection probabilityd
P@0,1#, or Ci j 50 with probability 12d @10#. The activation
function Q(r ) is defined asQ(r )5@11tanh(br)#/2. Here,
b[1/T characterizes a measure of the inverse magnitud
the amount of noise affecting this neuron, performing t
role of reciprocal temperature in analogy to thermodynam
systems. For convenience, we setb510 through all simula-
tions.

Obviously, the first term on the right-hand side of Eq.~1!
pictures the total responses from its own internal units. T
second term expresses the interaction of the summatio
the received signals from the neurons at the same positio
two networks. The parameter«P@0,1#, called the coupling
intensity, describes the interaction degree between coup
subsystems. When the intensity«!1, it is easy to see tha
the coupling subsystems evolve independently. On the o
limit case,«'1, the coupling subsystems are governed
the same dynamical law and will be driven into synchro
zation very easily.

For measuring coherence in the collective activity of t
neural systems, an important time-dependent feature, an
tivity function ui(t)5(k51

N xk
i (t) for each networki 51,2, is

introduced. When the global coupling of two systems is a
sent,«'0, u1(t) and u2(t) will update independently and
not become synchronized since the initial conditions in
subsystems are different. On the other hand, the activity
nals of two subsystems will be identical if the coupling sy
tems become synchronous. Figure 1~a! shows that the syn-
chronization for this extended system successfully ta
place att5275 for both subsystems withN5100, while the
coupling intensity«50.34 and the linked degree in eac
subsystemd50.2.

To show the degree of synchronization in this coupli
system, the dispersion of activity patterns is defined as

D~ t !5
1

2 (
i 51

2

(
k51

N

@xk
i ~ t !2 x̄k~ t !#2, ~3!

where x̄k(t)5221( i 51
2 xk

i (t) denotes the average activity o
neurons occupying thekth position in both subsystems a
time t. Figure 1~b! shows that the dispersion with a logarith
mic scale evolves in time, with the same synchronous c
ditions in Fig. 1~a!.
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It is obvious that the larger the coupling intensity« be-
comes, the more easily synchronization is reached for
system, with other parameters remaining the same. Conc
tantly, the question is whether there exists a critical coupl
parameter«c , and furthermore, whether there exists a dep
dent relationship between«c and the topological structure i
the subsystems. In fact, since the evolution of networks
sensitive to the varied initial states and the different rand
connecting weight matrices in systems with the same lin
degreed, it is impossible to find an identical value of«c .
However, the fact that the dispersion for these«c , corre-
sponding to varied initial states and connecting matrices
our simulations is distributed in a narrow region and in
universal way, even asN goes into infinity, causes us t
investigate the qualitative curve of«c vs d.

Figure 2~a! shows a plot of the critical coupling intensit
«c versus the linked degreed in subsystems with the siz
N5200. One can see that the qualitative relation between«c
and d is close to a sigmoidal curve. The largerd becomes,

FIG. 1. The synchronization of diluted networks withN5100,
«50.34, andd50.2. ~a! The evolution of time-dependent activit
of both subsystems comes into synchronization att5275.~b! Loga-
rithm of dispersion of both networks.
04191
e
i-

g
-

is

d

in

the larger«c becomes. This can be explained from the fa
that the evolution of subsystems with largerd is more stable
and it needs a more powerful coupling parameter to dr
their evolutions into synchronization. In Fig. 2~b!, we present
the plot of the simulation with the step size of linked degr
nd50.001 in the same conditions as Fig. 2~a!. Comparing
both plots of simulations, the agreement is excellent for
global tendency of the qualitative behavior of«c versusd.

From Fig. 3, it follows that it is more difficult to come
into synchronization with an increase of the size of su
systems. It is clear, however, that there exists a homolog
asymptotic behavior in the region of larger linked degre
Now, the case is how the limit of the coupling intensity d
pends on the varied size of networks. In Fig. 4, we pres
the plot of«c versus 1/N for the linked degreed51, which
is identical to the limit case. The form of the limit couplin
intensity as a function of the inverse of the size of netwo
calls for a fitting of these data with an exponential dec
function

FIG. 2. The simulations of relationship between the critical co
pling parameter«c and the linked degreed with N5200, corre-
sponding to step size of linked degree~a! nd50.05 and~b! nd
50.001.
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«c5A1Be21/(CN), ~4!

where the constantA50.4460.024, B50.4460.020, and
C50.006660.00071. It follows that the maximal critica
coupling intensity corresponding toN→` is set as 0.88
60.044, and in the same sense for another extreme case
minimal «c is 0.4460.024 if both global connecting sub
systems designed by Eq.~1! come into synchronization.

Another important topic is the fraction of coupling ne
rons between two subsystems. The considered coupling
tem can be viewed as a structure made of two horizo
layers of networks. Apparently, from the definition, Eq.~1!,
of the above investigated systems, the neurons are invo
in global vertical coupling interactions between two laye
or the dimensionality of coupling parameter is identical
the size of subsystems. Considering the real physical sys
or the potential applications, the coupling interactions m

FIG. 3. The qualitative relationship of«c vs d for various sizes
of networksN.

FIG. 4. The plot of«c vs 1/N for various sizes of networks in
the limit cased51. The exponential decay fitted curve of this r
lationship is shown by a dotted line.
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be diluted and modified with time. As a result, the syste
defined by Eq.~1! can be redefined as

xi
1~ t11!5@12«j i~ t !#Q„hi

1~ t !…1«j i~ t !Q„hi
1~ t !1hi

2~ t !…,

xi
2~ t11!5@12«j i~ t !#Q„hi

2~ t !…1«j i~ t !Q„hi
1~ t !1hi

2~ t !…,
~5!

wherej i(t)P$0,1% is a random number with probability 1
2p andp, respectively.

For revealing the association between the critical coupl
fraction pc and the coupling intensity«, the qualitative dia-
gram of pc versus« is shown based on numerical simul
tions for subsystems withN5100, d50.5 @see Fig. 5~a!#. It
is easy to get an acceptable conclusion thatpc decreases with
the increase of«. Note that the series of turning points co
responding topc51 in Fig. 5~b! are equivalent to the point
in the plot of«c versusd ~cf. Fig. 3!.

In addition, other valuable information about the minim
critical fraction for synchronization of this extended syste
denoted by Eq.~5! can be revealed from another critic

FIG. 5. The synchronization diagram of minimal coupling pro
ability pc vs the corresponding coupling intensity« ~a! for systems
with size N5100, d50.5 and~b! for systems with varied linked
degreed andN5100 in the form of qualitative curves.
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point at«51 in Fig. 5~a! and Fig. 5~b!. In Fig. 6, the mini-
mal critical coupling probability for various linked degree
of the subsystem withN5400 is presented. During the evo
lution of networks, the neuron of each site in both netwo
updates due to the competing effect of the local rules and
coupling mechanism. It is clear that the region above
curve is the synchronization part, while the lower part
desynchronized, thus the curve embodies a competing

FIG. 6. The qualitative relationship ofpc vs d with the sub-
system sizeN5400.
s.
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tionship between local correlation and stochastic coupling
is possible to give the minimal critical coupling fraction fo
various linked degrees in the synchronization of this e
tended system withN→` , which is more analogous to th
case of real biotic systems, through analyzing curves ofpc vs
d for various sizes of the subsystem. However, consider
our computational capability, the more intensive and deta
work is left out for future investigation.

In this paper, we have studied the critical features of
coupling parameter in the synchronization of neural n
works for various structural topologies. We obtain an exp
nential decay form in the case of global coupling amo
subsystems and full connection in each network. We find t
there exists a maximal and minimal critical coupling inte
sity for synchronization in this extended system. For the c
of partial coupling, a primary result about the critical co
pling fraction for various linked degrees of networks
shown. Considering that the definition of our model is that
a typical spatially extended system, it is useful to study
lated topics in other extended systems, such as synchron
tion and directed percolation in a coupled map lattice@11#,
coupled ordinary differential equations, and partial differe
tial equations.
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